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ABSTRACT 

We discuss the cosmological stability of higher dimensional models that feature internal 
manifolds given by the product of two spheres. In particular, we consider the csse when 
the total number of dimensions is even. After we obtain the vacuum energy coming from 
one-loop fluctuations of scalars and spin-; fermions, we show how a realistic cosmological 
scenario can arise by balancing the quantum energy with monopole-like contributions. 

1. Introduction 
The quest for a unified theory of the fundamental interactions based on higher- di- 

mensional spacetimes has been the focus of much attention in recent years’). From the 
upsurge of the traditional Kaluza-Klein theories in the mid- seventies to superstring theo- 
ries nowadays, the inclusion of “some” extra dimensions in the description of nature seems 
to be imperative if we are to unify gravity with the gauge interactions. 

Once we accept the possible physical relevance of extra-dimensions, two questions 
come immediately to our minds; why do the scales characterizing the physical four- 
dimensional spacetime and the internal compact space differ by roughly 60 orders of 
magnitude nowadays and what determines the stability of the internal space. The physical 
motivations for both questions should be obvious. We find no trace of extra dimensions on 
scales between 10-‘scm to 10’scm and also have very strict liits on the time variation 
of the fundamental couplings that would be induced by a time variation of the internal 
space. To put it concisely, the internal space is extremely small and static (or very nearly 
sop. 

On view of the above comments, it is important to study the stability of the various 
compactification mechanisms proposed to date in order to select the proper ground-state to 
the physical theory coming from extra-dimensions. Different compactification schemes will 
provide different ground-state geometries with different stability properties. Although we 
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expect the correct ground-state to be univocally determined once a better understanding 
of string theory is achieved, for the moment a stability analysis of compact manifolds is 
certainly useful. 

To our knowledge, there are presently three possible contributions to the energy- 
momentum tensor that can play a role in stabilizing the internal space. One can introduce 
a 4 + D-dimensional cosmological constant and use it to try to balance the curvature of the 
internal space, one can calculate l-loop quantum corrections that give rise to an attractive 
force coming from imposing boundary conditions to the fields in the effective action, very 
much like the Casimir effect in QED3) , or one can use the fact that most actions include 
anti-symmetric tensor fields that can assume non-trivial topological configurations on the 
compactified background41 . 

All the above possibilities have been extensively analysed in the literature, including 
some combinations of these effects with each other and with finite temperature’). Without 
going into details, it has been shown that models with a cosmological constant are semi- 
classically unstable against quantum tunneling; for large values of the internal radius 
the cosmological constant dominates and the system behaves like a 4 + D-dimensional de 
Sitter spacetime. (There is some apparent controversy as to whether the tunneling actually 
occurs, The root of the discussion is in the Weyl resealing of the metric that, according 
to some authors, is fundamental to the proper interpretation of the potential. We sustain 
that physical results will depend on the resealing since the theory is not conformally 
invariant and that the absence of tunneling that occurs with the resealed metric has to 
be reinterpreted in the light of the uncertainty principle, since the resealing changes the 
definition of time. In any case, the necessity of resealing has not been clarified yet. Work 
in these lines is on progress. )“) 

Thus, the more interesting possibilities seem to include the quantum and monopole 
effects. Accordingly, we have studied the possibility of obtaining a stable compactification 
with these effects taken into account’). We used, in ref. 7, an approximate expression 
for the Casimir effect in even dimensions and showed that, for certain theories in ten 
dimensions, it is possible to obtain a stable background. The promising model comes from 
N = 1 supergravity with fermionic condensation and with an internal space given by the 
product of two 3-spheres. It is yet far from being related to the phenomenologically more 
promising Calabi-Yau manifolds but it represents an example where the calculations can 
be presently performed and that will be of relevance once a realistic compactification is 
achieved. 

In the next section, we will present the results of a more complete calculation of the 
vacuum energy for even dimensional spaces with two internal spheres.‘) In particular, we 
will present the results for the M4 x S3 x S3 geometry that is of relevance to our previous 
stability analysis of ref. 7. In section 3 we will use these results within a cosmological 
context and write Einstein’s equations for the ten-dimensional case including monopole- 
like contributions. These latter terms come from the presence of the Kalb-Ramond 3- 
form in the action of N = 1 supergravity and can be used to induce the S3 x Ss 
compactification of the internal space. We will then integrate the equations numerically 
to study the possibility of finding solutions that exhibit both stability of the internal space 
and a physical rate of expansion for the four-dimensional spacetime. 
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2. Vacuum Energy of M4 x SM x SN in Even Dimensions 

We are interested in calculating the l-loop quantum fluctuations of scalars and spin- 
: fields in the background M4 x SM x SN geometry in even dimensions. We refer the 
reader to ref. 8 for details. In principle higher-spin fields should be included but we will 
concentrate on the simplest case at this level. The l-loop quantum potential is given in 
general by 

v, = bV6” - 4fV$‘2) , 

where b and f are the number of bosons and fermions, respectively. 
If we use the zeta-function regularization, we can write VQ as 

$4 = ; 
( 

znpp(O) + p(0) , i = 0,1/2 ) 
> 

(1) 

where p is a constant coming from the measure of the path integral. By taking into 
account the eigenvalues and degeneracies of the Laplacian operator of scalars and fermions 
in the above product manifold, we end up with an extremely complicated expression for the 
quantum potential. We will thus make two simplifications; we will only consider the case 
with two internal 3-spheres (which is the case of interest anyway) and will restrict ourselves 
to small deviations from equality in the ratio of the two internal radii. Accordingly, we 
define E , the deviation from equality of the radii, as 

where El (C) is the radius of the M (N) -sphere (here, M = N = 3 ) and retain, in what 
follows, terms of no higher than linear degree in E . With this approximation we obtain, 
after some algebra, 

V, = gIb(3.639 x lo--’ - ~6.053 x 1O-4 + 3.315 x 10-4(1 - 2e)ln(B$)+ 

+ f(3.657 x lo-’ - E5.414 x lo-s)]. (4) 

This is the quantum potential we were looking for. Note that the original symmetry 
under the interchange of the two radii was lost due to our asymmetric choice of expansion. 
The next step is to try to solve Einstein’s equations in the presence of this potential. 
Following Candelas and Weinberg (see ref.3), we should be able to find a constant solution 
for the internal radii by balancing the quantum correction with the classical curvature 
term. We can write Einstein’s equation for the M4 x S3 x S3 geometry whithin our 
approximation, as, 

6(1 - E) 87TG4 

B= 
= -v, 

v4 
(5.1) 

6(2 - 3~) =--Bav, 8rG4 

BS v4 LJB 
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6(2 - 3s) 8rG, avq 

B= =Vql% ’ (5.3) 

where we used that GD = G4flMn~ , with flM being the volume of the M-dimensional 
sphere. 

Now we impose that V&,Bo,c0) = 0 and that Bo and co are critical points of 
the quantum potential. The first condition is equivalent to fine-tuning the d-dimensional 
effective cosmological constant to zero and allows one to solve for ji in terms of Bo and 
co We note that in odd-dimensional theories the l-loop potential is independent of the 
renormalization parameter ,Q and one is forced to introduce a D-dimensional cosmological 
constant in order to obtain a flat d-dimensional spacetime. 

By using the expression of the quantum potential in equation 5, we find 

f Eg = 1.447 x 10-l + 6.871 x 1o-2 7; (6) 

3 = blO-s(8.14 - 5.26 X 10-l ;) . 
8*G4 

In particular, if we take b - f - lo4 , we find Bo z 1.42gLp , where Lp is the Planck 
length. Thus, for a sufficiently large number of matter fields, the l-loop calculation is 
valid. iVote also that so is small enough to justify our approximate solution. We have 
checked if this approximate solution is stable by explicitly calculating the second derivative 
of the effective potential obtained by taking the quantum and classical terms together. As 
expected, the solution given by equations (6) and (7) is not stable, representing a saddle 
point of the effective potential. This result, together with many others in the literature, 
seems to suggest that quantum effects alone are not enough to stabilise the internal space. 
We note however that the effective potential that will come from a realistic solution of a 
higher dimensional theory will be certainly more complex than the prototypes analysed so 
far. Hopefully, it will also exhibit the necessary properties for stability. 

3. Cosmological Evolution of Quantum Compactification 

Now that we have the expression for the quantum potential we are in a position 
to study the cosmological evolution of our model. Here, we will neglect the corrections 
that come from performing the quantum calculation in a time-varying background. These 
corrections may be of relevance in determining the sign of the kinetic term for the internal 
radius and thus may affect conclusions about the stability of perturbationsg) As usual, we 
consider a generalized Robertson-Walker metric for the product space M’ x S3 x S3 . We 
will also include a general monopole-like term in the energy-momentum tensor, as in ref.7. 
It is the balance between this term and the quantum contribution that can make stability 
possible. 

By writing the scale factors for the physical spacetime and for the internal space as 
A(t) , B(t) and s(t) and by writing the constants in the monopole contribution as f,” 
and f& , Einstein’s equations become, 



- . . 

;+$ 2;+3i+6; 
( I 

=- 32niB10 { b[aa(l - 3E) + ,8(1- 10s) - $1 - 5s)+ 

27(5 - 22~)ln(Bp)] + f [86(1 - 3s) + .!(I- los)]}t 

- & [(f:,“,” + (f:c)‘fl - 643 

1 
=96n’Blo( [ b 32a(l- 3~) - p(3 + 268) -S-7(1 - 5s)+ 

27(13 - 74+(Bji)] + f [326(1- 3s) - ((3 + 26s)]}+ 

+ & [3(f,B)’ - (fo”)‘(l - ‘343 (a.21 

~ + 2(1 - 2s) 
B1 

+;+f++5;+3;)+3i;=96~:glo(b[3~(1-5Se)+ 

5(1- 2d(P + 2+(Bp))] + sf (I- za)t)+ 

+ & [-(f,“)” + 3(fo’)V - 641 (8.3) 

where Q, p, 7, 6 and E are, in thii order, the numbers appearing in the result for 
the quantum potential, eq.(4). The 00 equation wa8 not written and can be used as a 
constraint equation. 

The usual procedure now is to 6nd the constant solutions for the internal radii by 
fine tuning the effective cosmological constant (the r.h.s. of eq. (8.1)) to zero and by 
setting the r.h.s. of eqs.(g.l) and (8.2) to zero. By doing this we can also express the 
regularization parameter ji in terms of the constant values for the internal radii, as we 
mentioned earlier. This was done for the static case without the monopole term in ref.& 
Note that the usual interpretation of eq.(g.2) sa an equation for a scalar field 4 = In( #-) 
is not possible here since the potential is a function of the two internal radii. A detailed 
analysis of the constant solution and its stability is in progressrO). For now, we show in 
fig.1 the result of a numerical integration of eq.(a). Note that the perturbation E oscillates 
around zero while the internal radius B oscillates around a constant value. The physical 
radius expands with a rate that is sensitive to the initial conditions used. This example 
suffices to show that, within certain approximations, it is possible to obtain a cosmological 
scenario coming from higher-dimensional theories that can be compatible with the usual 
Friedmann cosmology. 
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